Что такое интенсивность света

Что такое интенсивность света

Хорошо известно, что при нагревании до определённых температур вещества начинают излучать свет: будь то вольфрамовый волосок в электрической лампочке или наше небесное светило, температура на поверхности которого составляет тысячи градусов.

Учёными было установлено, что энергия атомов носит дискретный характер и изменяется определёнными скачками, своими для каждого атома. Эти установленные возможные значения энергий атомов получили названия энергетических или квантовых уровней. Электроны, находясь на одном из высших энергетических уровней, самопроизвольно переходят на более низшие через промежуток времени порядка 10 -8 секунды. При этом самопроизвольный переход из низшего состояния в любое другое невозможен. Этот уровень называется основным, в то время, как остальные — возбуждёнными. В нормальных условиях все атомы находятся в своих основных энергетических состояниях. Для того, чтобы возбудить атом, ему необходимо сообщить некоторую энергию, причём для каждого атома существует определённая наименьшая порция энергии, переводящая из основного состояния в возбуждённое (так для водорода эта величина равна 10,1 эВ — это расстояние между его первым и вторым энергетическими уровнями).

При переходе из более высоких состояний в более низкие испускается порция энергии — фотон. Согласно формуле Планка испускаемая энергия рассчитывается так:

где h — постоянная Планка, а νnm — частота фотона при переходе из уровня n на уровень m (n>m), которую можно рассчитать через энергии этих уровней:

С ростом температуры тела излучение дополняется всё более высокими частотами. Таким образом, излучение тела, нагретого до нескольких тысяч градусов, будет представлять сплошной спектр: от инфракрасного до ультрафиолетового.

Интенсивность света

Любой источник света характеризуется своей интенсивностью — средним по времени значением величины вектора Пойнтинга:

Таким образом, интенсивность пропорциональна квадрату амплитуды колебаний электомагнитного поля:

Через значение напряжённости электрического поля её можно выразить следующим образом:

,

где — диэлектрическая постоянная, — электродинамическая постоянная (скорость света в вакууме), — показатель преломления среды, μ — магнитная проницаемость вещества, — диэлектрическая проницаемость вещества.

Моделирование источников света в виртуальных пространствах [2]

В приложениях компьютерной графики реального времени, например в компьютерных играх, выделяют три основных вида источников света:

Они лишь приближённо описывают свои аналоги в физическом мире, тем не менее в сочетании с качественными моделями затенения, например затенением по Фонгу они позволяют создавать вполне реалистичные изображения.

Ссылки

  1. Г.С. Ландсберг Элементарный учебник физики. Том 3. Колебания и волны. Оптика. Атомная и ядерная физика. — 12-е изд.. — М.: Физматлит, 2001. — 656 с. — ISBN 5-9221-0138-2
  2. Д. Роджерс Алгоритмические основы машинной графики = Procedural elements for computer graphics. — пер. с англ.. — М.: Мир, 1989. — ISBN 5-03-000476-9,0-07-053534-5 (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Интенсивность света" в других словарях:

интенсивность света — сила света — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы сила света EN light intensitylight luminous… … Справочник технического переводчика

интенсивность света — šviesos stipris statusas T sritis automatika atitikmenys: angl. light intensity; luminous intensity vok. Lichtintensität, f; Lichtstärke, f rus. интенсивность света, f pranc. intensité de la lumière, f; intensité lumineuse, f … Automatikos terminų žodynas

интенсивность света — šviesos intensyvumas statusas T sritis fizika atitikmenys: angl. light intensity vok. Intensität des Lichtes, f; Lichtintensität, f rus. интенсивность света, f pranc. intensité de la lumière, f … Fizikos terminų žodynas

ИНТЕНСИВНОСТЬ СВЕТА — величина, пропорциональная квадрату амплитуды вектора электрич. напряжённости световой волны. В нек рых случаях, когда это не вызывает сомнений, термин И. с. используется как понятие, характеризующее распределение светового потока в пространстве… … Большой энциклопедический политехнический словарь

Читайте также:  Конвектор или ик обогреватель что брать

Интенсивность — Показатель геологической или другой природной опасности, прямо или косвенно характеризующий ее разрушительную силу Источник: Рекомендации: Рекомендации по оценке геологического риска на территории г. Москвы Смотри также родственные термины: 65… … Словарь-справочник терминов нормативно-технической документации

Интенсивность — (физика) средняя мощность, переносимая волной через единичную площадку, расположенную перпендикулярно направлению распространения волны. Интенсивность света усреднённое значение модуля вектора Пойнтинга. Интенсивность звука … … Википедия

Интенсивность излучения — Облако, окутанное лучами Солнца главного источника тепла и света на Земле Источник света любой объект, излучающий энергию в световом спектре. По своей природе подразделяются на искуственные и естественные. В физике идеализированы моделями… … Википедия

интенсивность рассеяния — 3.7 интенсивность рассеяния: Интенсивность света, рассеянного наночастицами в рассеивающем объеме. Источник … Словарь-справочник терминов нормативно-технической документации

ИНТЕНСИВНОСТЬ ИЗЛУЧЕНИЯ — (интенсивность лучистого потока), полный поток энергии излучения, проходящий за ед. времени через единичную площадку в направлении нормали к ней и рассчитанный на ед. телесного угла. Понятие «И. и.» применяется в теории равновесного излучения, в… … Физическая энциклопедия

интенсивность источника (света) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN source strength … Справочник технического переводчика

ЛЕКЦИЯ № 8

Законы геометрической (лучевой) оптики

Световые волны. Интенсивность света. Световой поток. Законы геометрической оптики. Полное внутреннее отражение

Оптика – это раздел физики, изучающий природу светового излучения, его распространение и взаимодействие с веществом. Раздел оптики, в котором изучается волновая природа света, называется волновой оптикой. Волновая природа света лежит в основе таких явлений, как интерференция, дифракция, поляризация. Раздел оптики, в котором не учитываются волновые свойства света и который основывается на понятии луча, называется геометрической оптикой.

§ 1. СВЕТОВЫЕ ВОЛНЫ

Согласно современным представлениям, свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других – как поток особых частиц (фотонов). Такое свойство называется корпускулярноволновым дуализмом (корпускула – частица, дуализм – двойственность). В этой части курса лекций будем рассматривать волновые явления света.

Световая волна – это электромагнитная волна с длиной волны в вакууме в диапазоне:

= (0,4 ¸ 0,76 ) × 10 − 6 м = 0,4 ¸ 0,76 мкм = 400 ¸ 760 нм =

ангстрем – единица измерения длины. 1A = 10 −10 м.

Волны такого диапазона воспринимаются человеческим глазом.

Излучение с длиной волны меньше 400 нм называют ультрафиолетовым, а

с большей, чем 760 нм, –

Частота n световой волны для видимого света:

= (0,39 ¸ 0,75) × 10 15 Гц,

с = 3 × 10 8 м/с – скорость света в вакууме.

Скорость распространения света в среде, как и любой электромагнитной волны, равна (см. (7.3)):

Для характеристики оптических свойств среды вводится показатель преломления. Отношение скорости света в вакууме к скорости света в данной среде называется абсолютным показателем преломления:

так как для большинства прозрачных веществ μ=1.

Формула (8.2) связывает оптические свойства вещества с его электрическими свойствами. Для любой среды, кроме вакуума, n> 1. Для вакуума n = 1, для газов при нормальных условиях n≈ 1.

Показатель преломления характеризует оптическую плотность среды . Среда с большим показателем преломления называется оптически более плотной. Обозначим абсолютные показатели преломления для двух сред:

Читайте также:  Нужен ли курам свет в курятнике

Тогда относительный показатель преломления равен:

скорости света в первой и второй среде, соответственно.

проницаемость среды ε зависит от частоты

электромагнитной волны, то n = n(ν) или n = n(λ) – показатель преломления будет зависеть от длины волны света (см. лекции № 16, 17).

Зависимость показателя преломления от длины волны (или частоты) называется дисперсией .

В световой волне, как и в любой электромагнитной волне, колеблются векторы E и H. Эти векторы перпендикулярны друг другу и направлению

вектора v . Как показывает опыт, физиологическое, фотохимическое, фотоэлектрическое и другие виды воздействий вызываются колебаниями электрического вектора. Поэтому световой вектор – это вектор напряженности электрического поля световой (электромагнитной) волны.

Для монохроматической световой волны изменение во времени и пространстве проекции светового вектора на направление, вдоль которого он

колеблется, будет описываться уравнением:

E = E m сos(ωt − kr + α).

Сравните (7.4) и (8.4).

Здесь k – волновое число; r – расстояние, отсчитываемое вдоль направления распространения волны; E m – амплитуда световой волны. Для плоской волны E m = const , для сферической убывает как 1/r.

§ 2. ИНТЕНСИВНОСТЬ СВЕТА. СВЕТОВОЙ ПОТОК

Частота световых волн очень велика, поэтому приемник света или глаз фиксирует усредненный по времени поток. Интенсивностью света называется модуль среднего по времени значения плотности энергии в данной точке пространства. Для световой волны, как и для любой электромагнитной волны, интенсивность (см (7.8)) равна:

Для световой волны μ≈ 1, поэтому из (7.5) следует:

μ 0 H = ε 0 ε E ,

откуда с учетом (8.2):

Подставим в (7.8) формулы (8.4) и (8.5). После усреднения получим:

Значит интенсивность световой волны:

Следовательно, интенсивность света пропорциональна квадрату амплитуды световой волны и показателю преломления. Заметим, что для

вакуума и воздуха n = 1, поэтому I

E 2 m (сравните с (7.9)).

Для характеристики интенсивности света с учетом его способности вызывать зрительное ощущение вводится величина Ф, называемая световым потоком. Действие света на глаз сильно зависит от длины волны. Наиболее

чувствителен глаз к излучению с длиной волны λ з = 555 нм (зеленый цвет).

Для других волн чувствительность глаза ниже, а вне интервала (400– 760 нм) чувствительность глаза равна нулю.

Световым потоком называется поток световой энергии, оцениваемый по зрительному ощущению. Единицей светового потока является люмен (лм). Соответственно, интенсивность измеряется либо в энергетических единицах (Вт/м 2 ), либо в световых единицах (лм/м 2 ).

Интенсивность света характеризует численное значение средней энергии, переносимой световой волной в единицу времени через единицу площади площадки, поставленной перпендикулярно направлению распространения волны. Линии, вдоль которых распространяется световая энергия, называют лучами. Раздел оптики, в котором изучаются законы распространения светового

излучения на основе представлений о световых лучах, называется геометрической, или лучевой оптикой.

§ 3. ОСНОВНЫЕ ЗАКОНЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

Геометрическая оптика – это приближенное рассмотрение распространения света в предположении, что свет распространяется вдоль некоторых линий – лучей (лучевая оптика). В этом приближении пренебрегают конечностью длин волн света, полагая, что λ→ 0.

Геометрическая оптика позволяет во многих случаях достаточно хорошо рассчитать оптическую систему. Но в ряде случаев реальный расчет оптических систем требует учета волновой природы света.

Первые три закона геометрической оптики известны с древних времен. 1. Закон прямолинейного распространения света.

Закон прямолинейного распространения света утверждает, что в

однороднойсреде свет распространяется прямолинейно.

Если среда неоднородна, т. е. ее показатель преломления изменяется от точки к точке, или n = n( r ) , то свет не будет распространяться по прямой. При

наличии резких неоднородностей, таких, как отверстия в непрозрачных экранах, границы этих экранов, наблюдается отклонение света от прямолинейного распространения.

Читайте также:  Прекрасно снимает старую краску

2. Закон независимости световых лучей утверждает, что лучи при пересечениине возмущают друг друга . При больших интенсивностях этот закон не соблюдается, происходит рассеяние света на свете.

3 и 4. Законы отражения и преломления утверждают, что на границе раздела двух сред происходит отражение и преломление светового луча. Отраженный и преломленный лучи лежат в одной плоскости с падающим

лучом и перпендикуляром, восстановленным к границе раздела в точке падения

Угол падения равен углу отражения :

Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой :

Для электромагнитного поля справедлив принцип суперпозиции. Так как свет имеет электромагнитную природу, то применение принципа суперпозиции означает, что результирующая напряженность электрического (магнитного) поля двух световых волн, проходящих через одну точку, равна векторной сумме напряженностей электрического (магнитного) поля каждой из волн в отдельности.

Как известно, интенсивность электромагнитной волны пропорциональна среднему по времени значению квадрата амплитуды колебаний вектора напряженности электромагнитного поля:

Поэтому интенсивность волны, как и любая другая нелинейная по полю (в данном случае — квадратичная по полю) величина принципу суперпозиции не подчиняется. Для нелинейных по полю величин принципа суперпозиции нет. Если векторы напряженности поля складываются, то интенсивности волн и общем случае не складываются. Отвлекаясь от деталей можно утверждать, что именно в этом и состоит причина такого явления как интерференция волн.

Рассмотрим две электромагнитные волны одинаковой частоты, которые накладываются друг на друга и возбуждают в некоторой точке пространства два колебания одинакового направления:

где и не зависящие от времени начальные фазы колебаний в рассматриваемой точке

Амплитуду результирующего колебания в данной точке можно найти с помощью векторной диаграммы.

Эта амплитуда Е зависит от разности фаз складываемых колебаний в данной точке. В рассматриваемом случае равенства частот волн разность фаз колебаний не изменяется во времени и равна при этом результирующая амплитуда Е также остается постоянной во времени:

Когерентные волны — это волны, которые возбуждают колебания в точках пространства, разность фаз которых остается неизменной во времени.

Когерентность это согласованное протекание нескольких колебательных или волновых процессов.

Для когерентных волн косинус разности фаз имеет постоянное во времени значение (но свое для каждой точки пространства), так что результирующая интенсивность света, как следует из (4.1) и (4.2), равна

Последнее слагаемое в полученном выражении носит название интерференционного члена. Таким образом, при наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности. Если интенсивности обеих интерферирующих волн одинаковы (), то в максимумах , а в минимумах .

Если накладываются некогерентные волны, то в данной точке пространства складываются колебания, разность фаз которых не постоянна во времени и, вообще говоря, принимает случайные значения. Если при этом случайно меняющаяся разность фаз — за некоторое время — принимает все возможные значения в интервале длиной , то среднее (за время ) значение косинуса в интерференционном члене равно нулю и наблюдаемая интенсивность света во всех точках пространства представляется просто суммой интенсивностей двух волн:

При равенстве интенсивностей приходящих волн получаем . Когда мы включаем две одинаковые лампочки, и помещение освещается в два раза ярче, чем одной из них, то это означает отсутствие интерференции и проявление соотношения (4.4). Таким образом,

необходимым условием наблюдения интерференции волн является их когерентность.

Ссылка на основную публикацию
Adblock detector