Фильтр сетевой помехоподавляющий схема

Фильтр сетевой помехоподавляющий схема

Что такое сетевой фильтр? – это относительно недорогое устройство, предохраняющее достаточно ценные электроаппараты отперегрузок по току, высокочастотных и импульсных помех, аномального напряжения (повышенного или пониженного относительно нормы).

Основная задача фильтра – пропустить через себя переменный ток частотой 50 Гц и напряжением 220 В, а всяким выбросам напрочь закрыть дорогу. Выбросов же в сети великое множество, и возникают они по разным причинам.

Например, включился холодильник, т.е. сработало пусковое реле его компрессора. В момент включения компрессор (электродвигатель) потребляет ток, в десятки раз (в 20. 40 раз) превышающий тот, что указан в паспорте. На этот миг в сети возникает “просадка’’ напряжения с последующим всплеском (рис.1) – вот и помеха!

Даже включение обычных лампочек в люстре приводит к возникновению, вроде бы, незаметных помех такого же характера. Они в момент включения потребляют ток, примерно в 10 раз больший номинального (пока спираль холодная).

Самое неприятное то, что амплитуда напряжения помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы “спалить” какое-либо чувствительное устройство.

Рис. 1. Напряжения с последующим всплеском.

Как же эту ситуацию предотвратить? Вот тут на арене и появляются сетевые фильтры питания! Они способны “проглотить” все вредные выбросы питающего напряжения.

Справедливости ради надо отметить, что медленные провалы напряжения ни один фильтр питания скомпенсировать не способен (для этой цели служат стабилизаторы напряжения).

Но наиболее опасными для аппаратуры являются все же импульсные помехи.

Принципиальная схема

На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” – “ноль” (“нейтраль”) – “земля”. Сразу на входе фильтра стоит варис-тор VR1.

Его задача – подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, СЗ, образующие LC-фильтр.

Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.

Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль" – “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.

Рис. 2. Типовая схема сетевого фильтра питания.

При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.

Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.

Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.

Рис. 4. График зависимости.

Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.

Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен). Почему это важно?

Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай – подключены принтер, сканер, внешний звуковой усилитель И Т.П.).

Это – идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.

Рис. 5. Схемы подключения различной периферии к компьютеру.

Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).

При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.

Таких случаев встречается множество. Самый распространенный – выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.

Для решения проблемы нужно подключить эти устройства к “европейскому” удлинителю, даже не соединенному (за неимением) с внешней “землей” (рис,5в). Здесь электрические потенциалы всех устройств выровнены, сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.

Основные параметры сетевых фильтров

Сечение подводящих проводов. Чаще всего сетевой фильтр (рис.6) выпускается с сечением жил порядка 0,75 или 1 мм2. Такое сечение считается достаточным, поскольку максимальный ток нагрузки, на который рассчитывается фильтр, обычно не превышает 10 А.

На такой ток устанавливается и предохранитель. При необходимости можно найти сетевой фильтр повышенной мощности, сечение жил проводов которого достигает 1,5 мм2. Предохранитель у такого устройства – на номинальный ток 16 А.

Рис. 6. Типичный сетевой фильтр-розетка.

Длина подводящего провода сети. Стандартизованная длина сетевого провода фильтра-180 см. У отдельных моделей она может равняться 190 см, 300, а то и 500 см. Количество розеток. Обычно их 4. 6 штук (рис.7).

Как правило, все розетки-с заземляющими “ушками” (типа “евро”). Встречаются фильтры с розетками разного типа (1 -универсальная и 4, 5 – “евро”, рис.8).

Рис. 7. Набор розеток.

Число и типы предохранителей. Предохранители включаются в сетевой фильтр для защиты от перегорания варисторов при больших импульсных помехах и отключения потребителей при коротком замыкании или длительной перегрузке нагрузочных цепей.

Для большей надежности отдельные изготовители, помимо термопредохранителей, устанавливают еще и самовосстанавливающиеся быстродействующие предохранители (на базе полупроводниковой металлоорганики).

Читайте также:  Набор инструментов ombra 911150

Фильтры

Предназначены для подавления помех. Встречаются чисто емкостные и индуктивно-емкостные на основе LC-цепочек. Катушки сетевого фильтра бывают без сердечников или с ферритовыми сердечниками (лучше всего на ферритовых кольцах).

Добавочные устройства. Индикаторы включения и исправного состояния защиты на светодиодах или на неоновых лампочках светятся при включенном фильтре (или его отдельном канале) и гаснут, когда срабатывают предохранители. Разрядники (газовые) подстраховывают варисторы при больших амплитудах импульсных помех.

Любые электроприборы требуют правильной эксплуатации. В отношении сетевых фильтров тоже есть ряд правил безопасности. Фильтры противопоказано подключать друг к другу.

Рис. 8. Пример фильтра с евро-розетками.

Это может неоправданно увеличить ток в “земляном” проводе. Кроме того, к сетевым фильтрам нельзя подключать устройства с большими пусковыми токами (пылесосы, кондиционеры, холодильники и пр.). Не рекомендуется подключать сетевые фильтры к источникам бесперебойного питания, поскольку это может привести к повреждению схем защиты.

Самодельные сетевые фильтры

Нередко имеющиеся в продаже дешевые фильтры на самом деле фильтрами не являются. Например, фильтр-удлинитель (рис.9). Там внутри находится лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда возникают в сети, и токовый размыкатель, срабатывающий при протекании большого тока (рис 10).

Рис. 9. Фильтр-удлинитель.

Рис. 10. Что внутри фильтра-удлиннителя.

На корпусе есть кнопка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал. Для превращения этого удлинителя в полноценный фильтр внутрь нужно встроить фильтрующие цепи.

На исходной схеме (рис.11а) S1 -токовый размыкатель, VR1 – варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса).

Рис. 11. Схема фильтрующих цепей для встраивания в удлиннитель-розетку.

В доработанном варианте (рис. 11 б) добавляется RLC-фильтр. Катушки L1 и 12 вместе с конденсаторами С1 и С2 образуют LC-фильтр.

Индуктивное сопротивление катушек растет на высоких частотах. Чтобы ослабить и низкочастотные помехи, последовательно с катушками включены резисторы R1 и R2. Резистор R3 разряжает конденсаторы при отключении фильтра от сети. При сборке фильтра (рис. 12) варистор оставляется штатный (типа 471, диаметром 6. 10 мм).

Чем больше сопротивление резисторов R1 и R2, тем лучше фильтрация, но больше их нагрев и потери напряжения в фильтре. Поэтому сопротивление резисторов выбирается в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру (при указанных номиналах РНагр.макс=250 Вт).

Дроссели L1 и L2 – промышленные высокочастотные, типа ДМ-1 индуктивностью 50. 100 мкГн. Конденсаторы – пленочные, типа К73-17 или аналогичные (импортные меньше по габаритам) емкостью не менее 0,22 мкФ (больше 1 мкФ тоже не нужно). Сопротивление резистора РЗ – не критично (от 510 кОм до 1,5 МОм).

Дополнительно на сетевой провод возле самого удлинителя желательно одеть ферритовую шайбу (удобнее всего разрезную на защелках – рис.13).

Рис. 12Сборка фильтра.

Рис. 13. Ферритовая шайба.

Другой вариант схемы помехоподавляющего сетевого фильтра приведен на рис. 14. Для большей эффективности он состоит из двух соединенных последовательно звеньев.

Первое (конденсаторы С1, С4, С5, С8, С9 и двухобмоточный дроссель 12) отвечает за подавление помех частотой выше 200 кГц.

Второе звено (двухобмоточный дроссель И с остальными конденсаторами) подавляет помехи, спектр которых простирается ниже указанной частоты (вплоть до единиц килогерц).

Рис. 14. Схема помехоподавляющего сетевого фильтра.

Благодаря магнитной связи между обмотками дросселей происходит подавление синфазных помех (тех, что наводятся одновременно на оба сетевых провода или излучаются ими).

Поэтому обмотки каждого дросселя должны быть одинаковыми и симметрично намотанными на магнитопроводы. Важно обеспечить правильную фазировку обмоток.

Их начала обозначены на схеме точками. Дроссель L1 намотан на ферритовом магнитопроводе Ш12×14 с самодельным каркасом из злектрокартона сложенным вдвое проводом ПЭЛШО 00,63 мм. Обмотка содержит 87 витков. Марка феррита, к сожалению, неизвестна. Измеренная прибором 1.Р235 индуктивность каждой обмотки – около 20 мГн.

Для дросселя 1.2 использован броневой магнито-провод Б22 из феррита 2000НМ1. Его обмотки содержат по 25 витков и намотаны тем же проводом и таким же образом, что и обмотки дросселя L1. Индуктивность каждой обмотки дросселя L2 – 120 мкГн.

Конденсаторы первого звена фильтра – слюдяные. Поскольку малогабаритных конденсаторов такого типа требующейся для фильтра емкости на нужное напряжение не существует, пришлось соединить попарно-параллельно конденсаторы КСО-5 меньшей емкости.

Аналогичное решение, но с попарно-последовательным соединением конденсаторов С2, С3 и С6, С7 (пленочных зарубежного производства), принято и во втором звене фильтра для обеспечения нужного рабочего напряжения.

Подключенные параллельно конденсаторам резисторы R1. R4 выравнивают приложенные к ним напряжения и обеспечивают быструю разрядку всех конденсаторов после отключения фильтра от сети. Конденсатор С9 – типа К78-2. Плата фильтра помещена в заземленную металлическую коробку.

Материал подготовил В. Новиков. РМ-07-12, 08-12.

В наше время, как никогда остро встает проблема электромагнитной совместимости радиоэлектронных средств (РЭС). Количество подключенных к электросети РЭС неумолимо возрастает. Проблема усугубляется еще и тем, что многие РЭС должны функционировать одновременно. Как правило, на должном уровне этому вопросу много внимания уделяется профессиональными разработчиками. Однако далеко не всегда достигается желаемый результат. В бытовых условиях ситуация еще хуже. Если же принять во внимание еще и плачевное состояние наших линий электропередачи, то дальнейшие комментарии станут ненужными.

Предлагаемый сетевой фильтр в значительной мере позволяет "отстроиться" от взаимного влияния помех "электросеть – РЭС -электросеть". Он собран из доступных деталей и не нуждается в налаживании.

Взяться за самостоятельное изготовление сетевого фильтра автора побудило несколько обстоятельств. При включении системного блока компьютера происходило резкое ухудшение качества просмотра ТВ изображения. Происходило это сразу на нескольких каналах одновременно. Сигналы от ТВ каналов вещающих в диапазоне MB, сразу становились сильно зашумленными. Цветопередача сильно нарушалась или исчезала полностью. Сильный муар сбивал строчную и кадровую синхронизацию.

Это было лишь «первой ласточкой». Помехи каким-то образом стали проявляться и в других телевизорах, расположенных на значительном отдалении от данного компьютера (десятки метров). Поначалу все можно было списать только на комнатную антенну (типовая «польская всеволновка»).

Изменили ее местоположение. Бесспорно, ситуация несколько изменялась в лучшую сторону. Но от зашумленности изображения избавиться не удавалось. Все, казалось бы, сокрыто в размещении антенны в помещении. Однако телевизоры, работающие в другом помещении, к тому же на наружную антенну, страдали похожими проблемами, правда, не в такой степени. И происходило это на тех же «злополучных» ТВ каналах. Причем, как только оргтехнику выключали, качество ТВ изображения становилось нормальным. Были проведены и другие эксперименты:
– антенны переносили;
– место расположения ТВ приемника изменяли;
– пытались использовать заводские сетевые «фильтры».

Читайте также:  Авр на моторприводах схема

Заводские сетевые «фильтры». Об этих фильтрах обязательно следует немного рассказать. Приобретались несколько разных удлинителей, именуемых сетевыми фильтрами.

Как удлинители они еще могли работать. Правда, там использованы настолько жесткие азиатские провода, что пользоваться ими и неудобно, и опасно. Довольно быстро контакты внутри таких «фильтров» расшатываются, и происходит разбалтывание соединений. Вскоре имеет место подгорание. Как известно, горит там, где плохой контакт, где греется.

Дальше было еще веселее. Разборка нескольких таких «фильтров» показала, что там нет никаких фильтров вообще. Только в одном из них производитель удосужился установить малогабаритный дроссель. Он намотан на кольцевом сердечнике. На корпусе этого дросселя указана индуктивность 2,2 мГн. Дроссель залит компаундом синего цвета. И нет рядом никаких помехоподавляющих конденсаторов! И это один из «наилучших» сетевых фильтров в ценовой категории дороже 15 USD.

В таких удлинителях-«фильтрах» имеется клавишный выключатель питания, подсвечиваемый миниатюрной неоновой лампочкой. Кстати, этот выключатель -первый кандидат на выход из строя. Он ненадежен с механической точки зрения. Вот лишь часть проблем, побудивших автора данной статьи взяться за собственное изготовление простого в исполнении сетевого фильтра.

Схема фильтра показана на рис.1.

Для повышенной эффективности он выполнен двухкаскадным. От многих других фильтров его отличает тот факт, что катушки фильтра каждого звена размещены на общем магнитопроводе. Никаких стержневых магнитопроводов не применяли. Благодаря магнитной связи между обмотками, происходит более сильное подавление низкочастотной синфазной помехи, которая наводится одновременно на обоих проводах катушек. Здесь важно обеспечить отмеченную на схеме (точками) фазировку обмоток. Кроме того, требуется и симметричность выполнения обеих обмоток.

Конденсаторы С1, С2 и катушки L1, L2 отвечают за подавление самых высокочастотных помех. Частоты до 200 кГц подавляются катушками L3, L4 и остальными конденсаторами. Катушки L1 и L2 намотаны вдвое сложенным проводом типа ПЭЛШО-0,63 и содержат 2×25 витков. Использован броневой магнитопровод Б22-2000НМ1. Индуктивность каждой катушки превышала 120 мкГн. Индуктивность измерялась универсальным прибором LP235. Несколько сложнее довелось с изготовлением второй пары катушек. Катушки L3 и L4 намотаны двойным проводом ПЭЛШО-0,63, и каждая обмотка содержит по 87 витков. Катушки намотаны на Ш-образном ферритовом магнитопроводе(Ш12х14). Марка феррита на сердечнике не приведена.

Полученная индуктивность каждой обмотки составляла почти 20 мГн (19,6 мГн). Перед выполнением этой обмотки изготовлялся самодельный каркас из электрокартона. Во избежание аварийных нештатных ситуаций в схеме установлен также держатель предохранителя с предохранителем на ток 10 А.

О конденсаторах. Это очень ответственные элементы в данной схеме. Поскольку не существует исполнения малогабаритных конденсаторов типа КСО емкостью 0,01 мкФ 500 В, использовано параллельное соединение конденсаторов меньшей емкости – 4700 пФ 500 В (С1-С4). Конденсаторы типов КСО неспроста пользуются хорошей репутацией. Конденсатор С5 – фильтровой телевизионный типа К78-2 номиналом 0,1 или 0,15 мкФ. Это также очень надежные конденсаторы. Практика это подтверждала многократно. Они специально разработаны для подавления импульсных помех в телевизионной технике. Впоследствии тандем из двух последовательно соединенных конденсаторов С8 и С9 также был заменен одним экземпляром К78-2. Установка четырех элементов R1, R2, С6 и С7 позволяет решить несколько задач одновременно.

Во-первых, снять проблему поиска (дефицита) высоковольтного и крупногабаритного конденсатора (0,5 мкФ 800 В).

Во-вторых, повысить надежность «батареи» конденсаторов, соединенных последовательно.
В-третьих, благодаря уравнивающим резисторам не только выравнивается напряжение на конденсаторах.

После случайного соприкосновения руками к выводам отключенного от питающей сети 220 В/50 Гц фильтра исключается кратковременный, но болезненный удар электрическим током. Благодаря наличию данных резисторов все конденсаторы в схеме оказываются быстро разряженными. Все катушки должны иметь одинаковую индуктивность. От кольцевых ферритовых магнитопроводов в данной ситуации отказались только по причине излишней рутинной работы, чтобы не скруглять острые края ферритовых поверхностей, не мучиться с трудоемкой и однообразной намоткой обмоток и т.п.

Конденсаторы можно применять и других типов. Однако конденсаторы указанных выше типов зарекомендовали себя очень надежно во многих ситуациях. Поэтому им и отдали предпочтение.

Все без исключения конденсаторы проверялись на величину выдерживаемого напряжения (своеобразным методом неразрушающего контроля, при малых тестируемых токах). Конденсаторы С6-С9 емкостью 1 мкФ 400 В типа МПТ-96. Для крепежа ферритовых изделий к плате металлические детали не использовали совсем. Применялся старый проверенный метод: нитки на клею.

Работа электротехнических и электронных устройств происходит за счёт питания сетевым током. Энергопоток через провода приносит с собой сателлитные электромагнитные поля. Они несут угрозу точности выполнения своих функций абонентами электросети. Решить этот вопрос могут сетевые фильтры (СФ). Их всегда можно купить в виде сетевых удлинителей. Зная схему сетевого фильтра, устройство несложно собрать своими руками.

Принцип работы сетевого фильтра

Напряжение переменного тока в сети 220 в изменяется в синусоидальном виде. Правильная форма электрического импульса «загрязняется» электромагнитными помехами. Синусоида выглядит в виде изгибающейся линии чистого сигнала, окружённой вязью блуждающих токов, вызванных фазными перекосами, подсадками и всплесками напряжения.

Сопровождающие помехи влияют на чувствительные компоненты электронных схем различных приборов и аппаратуры. Возникает проблема очистки тока от паразитных образований. Для этого применяют сетевой фильтр (СФ).

СФ встраивают между источником сетевого тока и потребителями. Он состоит из соединённых в определённом порядке дросселей и конденсаторов. Работа фильтра – выстраивание индуктивного сопротивления катушек, не пропускающего помехи высокой частоты. Ёмкости устройства отсекают нежелательные помехи. Конденсаторы замыкают цепь и не пропускают паразитные импульсы.

Устройство простого сетевого фильтра

СФ бывают двух видов:

  1. Встроенные.
  2. Стационарные – многоканальные.

Встроенные

Компактные платы СФ являются частью внутреннего устройства различного электронного оборудования. Ими оснащается компьютерная и другая сложная техника.

Читайте также:  Щиток для автоматов электрических цена

На фото видно устройство СФ. На плате установлены следующие детали:

  • VHF – конденсатор;
  • тороидальный дроссель;
  • добавочные конденсаторы;
  • варистор;
  • индукционные катушки;
  • термический предохранитель.

Варистором называют резистор с переменным сопротивлением. При превышении нормативного порога напряжения (280 в) его сопротивление может уменьшиться в десятки раз. Варистор выполняет функцию защиты от импульсного перенапряжения.

Стационарные – многоканальные

Корпус прибора имеет несколько розеток. Благодаря этому, есть возможность подключить через фильтр всю имеющуюся электротехнику в одном помещении к одной розетке. Для очистки от радиопомех высокой частоты применяется простой LC-фильтр. Несгораемые термопредохранители предотвращают скачки напряжения. В некоторых моделях применяются одноразовые плавкие предохранители.

Самостоятельное изготовление сетевого фильтра

Сделать самый простой сетевой фильтр своими руками в домашних условиях радиолюбителю будет совсем не трудно. Для этого нужно встроить небольшую схему внутрь корпуса сетевого удлинителя с несколькими розетками. На нижнем рисунке показано, как это сделать.

Устанавливают СФ в удлинителе следующим образом:

  1. Вскрывают корпус сетевого удлинителя.
  2. В параллельные ветви после выключателя и варистора впаивают резисторы R1, R2 и дроссели (индуктивные катушки) L1, L2.
  3. Затем ветви поочерёдно замыкают через конденсатор С1 и один резистор R3.
  4. Установка концевого конденсатора С2 может быть сделана в любом месте между розетками.

Важно! Если внутри корпуса удлинителя не найдётся места для второго конденсатора С2, то можно обойтись без него. Достаточно скорректировать параметры С1.

Дроссели применяются с незамкнутыми ферритовыми сердечниками индуктивностью от 10 мкГн. Конденсаторы подбираются в диапазоне 0,22-1 мкФ. Сопротивление резисторов коррелируют с планируемой мощностью потребителей. При нагрузке 500 Вт потребуются резисторы 0,22 Ом. Сопротивление R3 должно быть не меньше 500 кОм.

Видоизменённая схема

Вышеописанную схему нередко модернизируют. Применяя катушки с другими параметрами, обходятся без резисторов. Для этого берут дроссели с высокой индуктивностью – 200 мкГн. Вместо старой ёмкости впаивают конденсатор, рассчитанный на 280 в.

Схема СФ защиты от сетевых помех

Типовая схема сетевого фильтра является основой всех устройств такого типа за исключением дополнительных мелочей. Классикой является подключение к точкам: Земля, Фаза и Ноль. На входе устанавливается варистор VDR 1. Он подавляет всплески напряжения сетевого тока. При высоком скачке напряжения сопротивление варистора резко падает, этим он не пропускает помеху далее по схеме.

Для гашения небольших изменений напряжения используются дроссель Tr1 и три ёмкости С. Конденсаторы С1, С2 и С3 – реактивные радиодетали, постоянно меняющие уровень сопротивления. Оно при изменении частоты тока резко возрастает.

Нормальный ток беспрепятственно проходит через фильтр. В то же время помехи высокой частоты задерживаются в СФ. Сопротивление фильтра находится в прямой пропорциональной зависимости от величины частоты тока. Оба показатели одновременно возрастают, что позволяет задерживать помехи на пути к потребителю.

Обратите внимание! Трёхпроводная сеть питания может подвергаться возникновению помех на участках фаза – ноль, земля – фаза, земля – ноль. Эффективное подавление таких негативных явлений осуществляется нормальным стандартным заземлением СФ.

Пути улучшения схемы фильтра

Существует множество вариантов улучшения схемы сетевого фильтра. Один из них отличается остроумием и позволяет существенно экономить потребляемую электроэнергию. Суть метода заключается в следующем:

  1. Вскрывают корпус многоразъёмного СФ удлинителя.
  2. Одну из токоведущих шин разрезают.
  3. Отрезки соединяют с 5 вольтовым реле, рассчитанным на коммутацию тока 3А, 250 в.
  4. Два других контакта реле соединяют проводами с USB разъёмом на конце.
  5. Разъём подключают к USB входу телевизора.

В результате получается управляемая система питания, состоящая из ТВ, цифровой приставки и блока питания спутниковой антенны. Если ранее при выключении телевизора все части системы оставались в режиме ожидания, то с модернизированным фильтром они полностью отключаются. Стоит с пульта включить телеприёмник, как все коммутированные приборы тоже приводятся в действие и наоборот.

Дополнительная информация. Различные модернизированные СФ всегда можно найти на радиорынке, но стоят они довольно дорого. Поэтому намного выгоднее сделать усовершенствование устройства своими руками.

В другом случае идут по пути добавления в СФ LC-фильтра, который, помимо гашения помех от сети, понижает взаимно возникающие электрические помехи от подключённых потребителей.

Штатный варистор (470 в) часто не вызывает срабатывание автоматического предохранителя. Его меняют на аналогичное устройство, рассчитанное на напряжение 620 в. Это позволяет подавлять помехи от работающей стиральной машины, пылесоса и другой мощной электротехники.

Домашние мастера оснащают сетевые фильтры-удлинители звуковой сигнализацией. При превышении в сети уровня напряжения 280 в фильтр оповещает об этом сигналом.

Сетевой фильтр с 2-х обмоточным дросселем

СФ на основе дросселя с двумя обмотками применяют для чувствительной аудиотехники. Звуковые колонки чутко реагируют на помехи сетевого питания. Если таковые возникают, то динамики искажают звук и испускают посторонний фоновый шум. Радиоаппаратура, подключённая к сети через СФ с 2-х обмоточной катушкой, защищена от таких помех.

Схему собирают на отдельной печатной плате. Потребуются несколько конденсаторов и самодельный дроссель. Его изготавливают следующим образом:

  1. Кольцо из феррита марки НМ с показателем магнитной проницаемости от 400 до 3000 можно взять из старой электротехники.
  2. Магнитопровод оборачивают тканью и покрывают лаком.
  3. Для обмотки применяют провод марки ПЭВ. Его площадь сечения зависит от величины нагрузки. Мощные потребители требуют существенного увеличения этого параметра.
  4. Намотку ведут двумя проводами в разных направлениях.
  5. Делают 10, 12 оборотов каждого проводника.
  6. Конденсаторы устанавливают в начале и конце схемы. Они должны выдерживать напряжение до 400 в.

Обмотки катушки индуктивности включаются в последовательном порядке. Поэтому магнитные поля катушки взаимно поглощаются. При прохождении тока высокой частоты резко возрастает сопротивление дросселя. Ёмкости поглощают и закорачивают помехи.

Печатную плату помещают в отдельный металлический корпус. В крайнем случае схему отгораживают металлическими бортиками. Это делается с целью исключения дополнительных помех от блуждающих электромагнитных полей.

С каждым новым поколением электронного оборудования предъявляются повышенные требования к качественным характеристикам сетевого тока. Чтобы не заниматься ремонтом чувствительной электроники, нужно обязательно подключать её через сетевые фильтры. Если фильтровать ток нужно для небольшого количества потребителей, то можно пойти по экономному пути и изготовить сетевой фильтр своими руками.

Видео

Ссылка на основную публикацию
Adblock detector