Эксперимент действие магнитного поля

Эксперимент действие магнитного поля

В физике уже давно установлено, что магнитные и электрические явления связаны между собой. Такую связь доказывает опыт Эрстеда, магнитное поле тока и другие факторы, указывающие на одинаковую природу магнетизма и электричества. Полученные результаты позволили глубже изучить суть этих явлений для последующего применения их в практической деятельности.

Взаимосвязь магнитных и электрических явлений

Аналогия данных явлений проявилась еще в результате первых исследований. В качестве примера можно привести свойства притягивания и отталкивания, когда в электростатике притягиваются и отталкиваются разноименные и одноименные заряды, а в магнетизме – аналогичные полюса.

В течение продолжительного времени было невозможно провести необходимые опыты по причине отсутствия постоянного источника тока. Проведение первых опытов, связанных с намагничиванием иглы, стало возможным после появления лейденской банки. Более широкие исследования начались после того как появилась батарея Вольта.

Первым, наиболее удачным экспериментом, считается опыт Эрстеда с использованием металлической проволоки, натягиваемой между двумя стойками. Расположение магнитной стрелки под проволокой выполняется так, чтобы происходило ее выравнивание относительно магнитного поля земли. Таким образом, она становится направленной с севера на юг. В самом начале электрического тока в цепи не было, проволока и стрелка располагались параллельно между собой. После этого проволока подключалась к источнику тока.

Суть опыта Эрстеда

Во время включения электрического тока в цепь происходит поворот магнитной стрелки на 90 градусов. Она принимает положение, перпендикулярное относительно проволоки. В процессе поворота стрелка начинает колебаться, а затем успокаивается в установленном положении. После отключения тока магнитная стрелка снова принимает исходное положение, размещаясь в направлении магнитного поля земли.

После первых опытов Эрстеда данной проблемой стали заниматься и другие ученые. Например, английским физиком Фарадеем была выдвинута теория, связанная с силовыми линиями магнитного поля. Опыт Эрстеда позволяет обнаруживать магнитное поле и без специального лабораторного оборудования.

Опыт Эрстеда проводится с помощью высокого стакана с водой и широкой чашки с солью, растворенной в воде. Далее, нужно взять иглу, намагнитить ее постоянным магнитом, смазать жиром и опустить в стакан на водную поверхность, не нарушая ее поверхностный слой. Игла будет играть роль магнитной стрелки. В качестве источника тока служит уголь, завернутый в ткань и опущенный в соленую воду и пластина из цинка, также опущенная в соленую воду. При замыкании или размыкании самодельной цепи, игла будет поворачиваться в соответствующем направлении.

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ ( B ) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Читайте также:  Плоский кактус с колючками

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ ( l ) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ ( l ) ​ и силе тока ​ ( I ) ​ в проводнике: ​ ( Fsim Il ) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ ( B ) ​. Соответственно, ​ ( F=BIl ) ​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ ( B=frac ) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ ( [В] = [F]/[I][l] ) ​. ​ ( [B] ) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ ( ab ) ​, противоположна силе, действующей на сторону ​ ( cd ) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

Читайте также:  Моторедуктор заслонки отопителя ваз 2110 как проверить

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Людмила Великородная
Опыты с магнитом

Экспериментирование – эффективный метод познания закономерностей и явлений окружающего мира и как никогда экспериментирование является одной из актуальнейшей проблем современности.

Детское экспериментирование имеет огромный развивающий потенциал. Главное его достоинство в том, что оно даёт детям реальные представления о различных сторонах изучаемого объекта, о его взаимоотношениях с другими объектами и средой обитания.

Эксперимент обогащает память ребёнка, активизирует его мыслительные процессы, включает в себя активные поиски решения задач, т. е. экспериментирование является хорошим средством интеллектуального развития дошкольников.

В детском экспериментировании наиболее мощно проявляется собственная активность детей, направленная на получения новых знаний, сведений.

Цель: развитие познавательной активности детей в процессе знакомства со свойствами магнитов.

• Знакомство с понятием "магнит".

• Формирование представлений о свойствах магнита.

• Актуализация знаний об использовании свойств магнита человеком.

• Формирование умений приобретать знания посредством проведения практических опытов, делать выводы, обобщения.

• Воспитание навыков сотрудничества, взаимопомощи.

Что такое магнит? Это тело, способное притягивать железные и стальные предметы. Известен давно, еще древние китайцы более двух тысяч лет назад знали о магнитах. Магнит – от названия региона, где обнаружили магнитные залежи – Магнисия. Это в Малой Азии.

Существует и другое объяснение слова "магнит" — по названию древнего города Магнесия, где эти камни нашли древние греки. Сейчас эта местность называется Маниса, и там до сих пор встречаются магнитные камни. Кусочки найденных камней называют магнитами или природными магнитами. Со временем люди научились сами изготавливать магниты, намагничивая куски железа.

Необыкновенная способность магнитов притягивать к себе железные предметы или прилипать к железным поверхностям всегда вызывала у людей удивление. Сегодня мы поближе познакомимся с их свойствами.

Опыт 1: Что притягивает магнит

Читайте также:  Схема подключения бетономешалки на 220 вольт

Проведение опыта с магнитом легко организовать. Вам понадобится несколько опытных материалов – легких и знакомых малышу. Например: носовой платок; бумажная салфетка; карандаш; гайка; копейка; кусочек пенопласта; карандаш и т. д. И, конечно, магнит. Предложите ребенку подносить магнит к каждому экспонату и понаблюдать. Этот опыт можно расширить, используя изделия из различного металла: алюминия, золота, серебра, никеля и железа. Проводя опыт, вы можете объяснить особенности металлов, показывая, чем железо отличается от других.

Опыт 2: Очень легкий опыт с магнитом для детей в форме игры.

Положите в контейнер скрепки или другие железные мелкие предметы, засыпьте их мукой или манкой. Предложите ребенку, подумать, как можно достать клад. Просеять? Наощупь? А может с магнитом удобнее? Этот эксперимент поможет детям понять, что магнетизм действует на железные предметы и через другие материалы, например, бумагу и стекло. На картонный или деревянный лист насыпьте скрепки и, водя магнитом под материалом, продемонстрируйте движение железных деталей. Такой же опыт можно сделать еще и с листом стекла. Например, на обычный журнальный столик со стеклянным верхом положите несколько железных предметов и водите магнитом снизу. Вывод: магнит может примагничивать железо через бумагу разной плотности, нетолстую доску или стекло. Взять бабочку с магнитиком посадить ее на лист картона, и, водя с оборотной стороны магнитом, «пересаживайте» бабочку с одной стороны картона на другой

Опыт 3: магнит, вода и магнитное поле. Удивительными детям кажутся эксперименты с водой. Возьмите стаканчик из прозрачного пластика или стекла, опустите туда скрепки и начинайте водить магнитом по стенке стакана. Предметы из воды будут «ползти» вверх за движением магнита.

Еще один эксперимент – действие магнита на расстоянии. Начертите на листе бумаги на различном расстоянии линии. У каждой положите скрепку. Попросите ребенка проанализировать, на какое расстояние действует магнит, приближая его к опытным материалам. Магнит проявляет свою силу только на определенном расстоянии от предмета. Когда расстояние между предметом и магнитом значительное, предмет оказывается вне области действия. Таким образом, возможно уменьшить магнитную силу или вообще ее нейтрализовать. Это явление можно показать с помощью монетки. Обвяжите ее ниткой, приклейте нить к картону и положите его на стол. Поднесите магнит к монетке на расстояние одного метра. Перемещайте магнит ближе к монете, пока монетка не начнет двигаться. Измерьте расстояние линейкой. Поднесите магнит еще ближе, чтобы монета притянулась к нему. Снова измерьте. Когда магнит находится в пределах линии, он притягивает монету. Но когда магнит оказывается вне линии, монета остается на месте

Магнитное поле «глушит» песок Еще один эксперимент на это свойство с песком. Опустите иглу в стакан и насыпьте в него немного песка. Поднесите магнит к стенкам стакана – игла не реагирует на магнит. Теперь поместите иглу в стакан с водой и проделайте с магнитом то же самое. Игла будет следовать за магнитом к краям стакана Объясните, что магнитное поле проникает через воду. Если бы стенки стакана состояли из какого-нибудь магнитного материала, то игла все равно притягивалась бы к магниту, но не с такой силой. Магнитное поле ослаблялось бы стенками стакана.

Опыт 4: магнит-проводник

Магнит может передавать свойства притяжения через железо. Для этого эксперимента вам понадобится сильный магнит. Действия лучше делать вертикально. Подвесьте к магниту скрепку, а к ней – следующую. Попросите ребенка вам помочь, прикрепляя «звенья» к магнитной цепи. Еще почти подобным экспериментом можно показать, что магнитное поле легко создать искусственно. Уберите магнит от цепочки скрепок, если потом подносить их друг к другу, то они начнут притягиваться, как если бы работал магнит. Это происходит потому, что атомы в железном предмете под влиянием магнитного поля выстраиваются в такой же ряд, как и в магните, на время приобретая его свойства.

Конспект занятия с использованием опытов с магнитом «В гостях у фокусника!» Простые опыты с магнитом. Цель: развитие познавательной активности ребенка в процессе знакомства со скрытыми свойствами магнита. Задачи:.

«Вода и ее свойства» — опыты с детьми Этот опыт мы с детьми проводили в течении 3 месяцев, наблюдая за водой и ее свойствами. В каком состоянии бывает вода и какое важное значение.

Эксперимент с магнитом «Рыбалка» в подготовительной к школе группе Цель: Развивать творческое воображение детей в процессе поиска способов применения магнитов, придумывания сюжетов для игр с их использованием.

Картотека «Опыты с камнями» Опыт 1 Цель: показать разнообразие камней по внешним признакам. Материал: разнообразные камни, мисочки с водой. Рассмотрим, какие бывают.

Конспект занятия по экспериментированию в подготовительной группе «Знакомство с магнитом и его свойствами» Конспект занятия по экспериментированию в подготовительной группе «Знакомство с магнитом и его свойствами» Цель: развитие познавательной.

Опыты для дошкольников ОПЫТ №1 «УДИВИТЕЛЬНЫЙ ПЕСОК» Цель: познакомить со свойствами и качествами песка, его происхождением, развивать смекалку. Материал: 3 стеклянные.

Опыты для детей 1. Карандаши Понадобится: полиэтиленовый пакет, простые карандаши, вода. Показать полностью… Опыт: Наливаем воду в полиэтиленовый пакет.

Опыты с фруктами .

Опыты с водой Цель: расширять знания детей о свойствах воды (вкус, цвет, запах, текучесть). Задачи: 1. развивать познавательной интерес, любознательность,.

Опыты с воздухом Существование воздуха Опыт 1 Цель: Доказать существование воздуха Переверните стакан вверх дном и медленно опустите его в воду. Обратить.

Ссылка на основную публикацию
Adblock detector