Энергетическую характеристику электрического поля определяет

Энергетическую характеристику электрического поля определяет

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

• порождается электрическим зарядом;

• обнаруживается по действию на заряд;

• действует на заряды с некоторой силой.

Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях

данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до

точки определения поля.

Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем

самым не изменить создаваемое ими поле.

Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор

p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий –это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:

2. энергетическая характеристика – потенциал j – это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

U = j1 – j2 – разность потенциалов (напряжение)

Физический смысл напряжения: U = j1 – j2 = А/q – – напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

.

Единицей измерения индукции электрического поля служит 1 Кл/ м 2 . Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Читайте также:  Обои с городом в комнату подростка

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности – это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F 0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

(78.1)

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде:

Электрическое поле – это особая форма материи которая создаётся электрическими зарядами (заряженными телами) и которую можно обнаружить по взаимодействию электрических зарядов (заряженных тел).

Свойства электрического поля:

1. Оно материально, т.е. существует независимо от нас и наших знаний о нём.

2. Оно создаётся электрическими зарядами (заряженными телами)

3. Оно обнаруживается по взаимодействию электрических зарядов (заряженных тел)

4. Оно действует на электрические заряды (заряженные тела) с некоторой силой.

5. Электрическое поле непосредственно невидимо, но может наблюдаться по его действию и с помощью приборов.

6. Электрическое поле является одной из составляющих единого электромагнитного поля и проявлением электромагнитного взаимодействия.

7. Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда

Напряженность электрического поля – векторная физическая величина.

Направление вектора совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

8. Энергетической характеристикой поля является потенциал.

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля.

В Международной системе единиц (СИ) единицей потенциала является вольт (В): 1 В = 1 Дж / 1 Кл.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8985 – | 7636 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Читайте также:  Сколько стоит аккумулятор варта

Отключите adBlock!
и обновите страницу (F5)

очень нужно

(Потенциал электрического поля)

Работа сил электростатического поля.

Элементарная работа как скалярное произведение

dA= =F . cosα . ds

dA= =F . dr

так как dr=cosα . ds

Эта работа определяется только начальным и конечным положением пробного заряда q ,т.е. электрическое поле является потенциальным, а кулоновские силы – потенциальными или консервативными (как гравитационные силы). Тогда работа A1→2 перемещения заряда q из точки 1 до точки 2 равна убыли потенциальной энергии Wp: . Сравнивая с А12 для выражения потенциальной энергии получаем: .

Не зависит от значения пробного заряда q и служит энергетической характеристикой электрического поля (потенциал электрического поля).

φ = работе, совершаемой полем при перемещении единичного, положительного заряда из этой точки поля до бесконечности (∞).

Единица измерения потенциала [φ] =Вольт (В); 1В= ;

Т.е. Вольт является потенциалом такой точки, при перемещении из которой заряд +1 Кл на бесконечность, совершается 1 Дж работа.

Теперь уже можно найти, что

В атомной физике, астрофизике и химии за единицу энергии обычно употребляется электрон-вольт (эв).За 1эв принимается такое количество энергии, которая приобретает электрон пройдя разность потенциалов Δφ=1в.

1 эв=1,6 . 10 -19 Кл . 1 в=1,6 . 10 -19 Дж

Для сравнения; энергия теплового движения молекул при комнатной температуре (Т≈300К 0 )

Таким образом, = . Сравнивая с А12 или А1→2 и разделяя на q

=φ12 или А=q12).

Если q заряд перемещается из точки с потенциалом φ1 в точку с потенциалом φ2, то силы поля совершают такую работу.

Иными словами, разность потенциалов двух точек поля равна работе сил поля по перемещению единичного, положительного заряда из одной точки в другую.

Из Wp (r→∞)=0 вытекает, что и φ(∞)=0, но это несущественно, т.к. важна Δφ :в формулах, обычно, присутствует именно разность потенциалов.

Знак потенциала определяется знаком заряда, создающего поля, таким образом, потенциал поля точечного заряда (или шара с однородным распределением зарядов при r>R, где R -радиус шара):

,

где (-) относится к случаю отрицательного заряда а (+) к случаю положительного заряда.

Если q … +φn=

Потенциальная энергия отталкивания одноименных зарядов > 0 и возрастает при сближении зарядов. Потенциальная энергия разноименных зарядов отрицательна и возрастает до нуля при удалении одного из зарядов в бесконечность.

Работа электрических сил отталкивания одноименных зарядов положительна, если заряды удаляют друг от друга, и отрицательна, если происходит сближение зарядов. Иными словами, работа электростатических сил притяжения разноименных зарядов положительна, если заряды сближаются и отрицательна, если они удаляются друг от друга.

Так как эти потенциальные кривые не имеют минимума (потенциальной ямы), то эта система не может находиться в устойчивом равновесии, т.е. она неустойчива.

Всякая конфигурация покоящихся электрических зарядов неустойчива, если между ними действуют только кулоновские силы (теорема Ирншоу).

Читайте также:  В какое время года лучше высаживать тую

Или иными словами, устойчивое статическое распределение электрических зарядов, находящихся на конечных расстояниях друг от друга, невозможно.

Надо отметить, что равновесие между многими разноименными зарядами может осуществляться при определенном их взаиморасположении и определенном соотношении между их величинами. Но это равновесие не будет устойчивым.

Механический аналог устойчивого и неустойчивого равновесия шарик в гравитационном поле.

Пример неустойчивого равновесия

Противовес электрических сил в моделях атомов, молекул, ионов, в кристаллах существуют непрерывное движение и колебание заряженных частиц.

Устойчивое равновесие заряженных частиц в атомах, молекулах, ионах и т. п. системах достигается благодаря динамическому характеру их взаимодействии, т.е. они не являются статическими системами. Например, динамический (колебательный) характер устойчивости в молекулах приводит к одновременным действием межмолекулярных сил притяжения и отталкивания, причем зависимость сил притяжения и сил отталкивания от расстояния между заряженными частицами выражается различными и отличающимися от закона Кулона закономерностями.

Поверхность, во всех точках которой потенциал одинаков, называется эквипотенциальной поверхностью: перемещение заряда вдоль этой поверхности не сопровождается работой, так как при φ=const, Δφ=0.

А это значит, что в каждой точке силовые линии электрического поля перпендикулярны эквипотенциальным поверхностям.

Свойства электростатических полей:

1. В каждой точке эквипотенциальной поверхности напряженность перпендикулярна к этой поверхности и направлена в сторону убывания потенциала.

2. Работа по перемещению электрического заряда по одной и той же эквипотенциальной поверхности равняется 0.

Внутри проводника =0, а все точки объема проводника имеют одинаковый потенциал, совпадающий с потенциалом поверхности проводника.

Таким образом, электрическое поле графически можно изображать не только при помощи силовых линий, но и при помощи эквипотенциальных поверхностей: они обычно проводят так, чтобы Δφ между любыми двумя соседними эквипотенциальными поверхностями были одинаковыми.

Связь между напряженностью и потенциалом электрического поля

По сущности, эта связь между силовыми и энергетическими характеристиками электрического поля.

На рисунке нанесены силовые линии (сплошные стрелки) и проекции эквипотенциальных поверхностей (пунктирные линии) электростатического поля. Элементарная работа, совершаемая полем при передвижении заряда q из точки 1 в точку 2 , можно определить двумя способами:

учитывая, что dℓ . cosα=dn

Модуль напряженности поля (Е) в данной точке определяется быстротой падения потенциала вдоль линии напряженности.

Знак (-) показывает, что вектор направлен в сторону убывания потенциала.

,

Градиент физической величины называется ее изменение, приходящееся на единицу расстояния в направлении наибольшего возрастания: .

Понятие градиента применимо к любой физической величине (скорости, плотности, температуре, давлению и т.д.), если только она имеет пространственное распределение. Например, известно, что средний градиент температуры земной коры (геотермический градиент) направлен к центру Земли и составляет около 0,003 К/м. Это означает, что температура земной коры возрастает в среднем на 3 0 С на каждые 100м глубины.

В общем случае , который обозначается также оператором Гамильтона или «набла»- оператором ( U).

Таким образом, =−grand φ .

Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

Ссылка на основную публикацию
Adblock detector